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Abstract
The magnetoresistance and the noise power of non-metallic phase-separated
manganites are studied. The material is modelled by a system of small
ferromagnetic metallic droplets (magnetic polarons or ferrons) in an insulating
matrix. The concentration of metallic phase is assumed to be far from the
percolation threshold. The electron tunnelling between ferrons causes the
charge transfer in such a system. The magnetoresistance is determined both
by the increase in the volume of the metallic phase and by the change in the
electron hopping probability. In the framework of such a model, the low-field
magnetoresistance is proportional to H 2 and decreases with temperature as
T −n , where n can vary from 1 to 5, depending on the parameters of the system.
In the high-field limit, the tunnelling magnetoresistance grows exponentially.
Different mechanisms of the voltage fluctuations in the system are analysed.
The noise spectrum generated by the fluctuations of the number of droplets
with extra electrons has a 1/ f form over a wide frequency range. In the case of
strong magnetic anisotropy, the 1/ f noise can also arise due to fluctuations of
the magnetic moments of ferrons. The 1/ f noise power depends only slightly
on the magnetic field in the low field range whereas it can increase as H 6 in the
high-field limit.

1. Introduction

Recent theoretical and experimental studies demonstrated clearly that the tendency toward
phase separation is of fundamental importance for the physics of manganites and seems to
play a key role for the colossal magnetoresistance phenomenon [1–3]. The self-trapping of
3 Author to whom any correspondence should be addressed.

0953-8984/03/101705+13$30.00 © 2003 IOP Publishing Ltd Printed in the UK 1705

http://stacks.iop.org/JPhysCM/15/1705


1706 A O Sboychakov et al

charge carriers is the most widely discussed type of phase separation, first predicted in the
seminal paper of Nagaev [4]. In such phase-separated states, charge carriers are confined
within small ferromagnetic metallic droplets (magnetic polarons or ferrons) located in an
insulating antiferromagnetic matrix. In the limit of strong Coulomb interaction, each droplet
contains one charge carrier in a potential well of ferromagnetically ordered local spins S with
a characteristic size of about several lattice constants.

The number of charge carriers, and consequently concentration of the metallic phase x , are
related to the content of the divalent dopants. At critical metallic phase concentration x = xc

(for spherical ferrons xc ≈ 0.15), the droplets start to overlap and the large metallic clusters
arise in the system [2, 5]. We shall consider the case when x is less than xc and the charge
transport is caused by electron tunnelling from one droplet to another. Here we neglect the
contribution to the current from the motion of ferrons themselves due to their large effective
mass [6].

In the concentration range under study, the magnetoresistance is determined by the increase
in the metallic phase volume and by the change in the probability of electron transitions. The
latter mechanism gives the main contribution to the magnetoresistance when the system is far
from the percolation threshold. The magnetic field dependence of the tunnelling probability
is caused both by the change of the mutual orientation of magnetic moments of ferrons and by
the variation in ferron size. The mechanisms of magnetoresistance are analysed in section 2.

One of the striking features of manganites in the non-metallic phase is an unusually large
magnitude of 1/ f noise [7, 8]. It is clear that the origin of this noise is closely related to the
conductivity mechanisms in the phase-separated state. Several sources of the 1/ f noise and its
magnetic field dependence are discussed in the present paper. First, we generalized the result
of [6] for the noise power caused by fluctuations of the number of electrons in ferrons taking
into account the effect of applied magnetic field and the spin-dependent tunnelling of charge
carriers (see section 3).

The fluctuations of the magnetic moment of ferrons also cause noise in the system. We
consider these fluctuations in the limit of low temperatures and strong uniaxial magnetic
anisotropy. In this case, each ferron can be treated as a two-level system. The transition of
the magnetic moment from one state to another requires overcoming an energy barrier. The
spread of the barriers can lead to the 1/ f -type noise spectrum over a wide frequency range.
This mechanism is analysed in section 4. The noise power caused by fluctuations of the ferron
size is considered in section 5.

The relative contributions of different mechanisms to the magnetoresistance and 1/ f noise
in different temperature and magnetic field ranges are summarized in section 6. In this section
we also discuss the experimental implications of the results obtained.

2. Magnetoresistance

The model allowing analysis of the tunnelling electron transport in non-metallic phase-
separated manganites was formulated in [6, 9]. In this section we briefly remind ourselves
of the basic features of the model and the main results concerning magnetoresistance.
Special emphasis will be placed on those details important for the consideration of the noise
mechanisms.

Let us consider an insulating antiferromagnetic sample of volume Vs with total number
of carriers N . In the ground state every charge carrier is self-trapped in the potential well
(droplet) of radius R formed by ferromagnetically ordered local spins. The number of droplets
is assumed to be equal to the number of carriers. Due to tunnelling, carriers can pass from one
droplet to another. Consequently, droplets with more than one electron are created and some
droplets become empty.
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The creation of a two-electron droplet is associated with the energy barrier of the order
of the Coulomb repulsion V between electrons in this droplet. The value of the ferron
radius R can be estimated as 10–20 Å and dielectric constant ε ≈ 10–20. Hence we have
V = e2/εR ≈ 0.1–0.2 eV [3]. In the following, we assume that the temperature T is low
enough in comparison with this barrier and we neglect the probability of the creation of ferrons
with more than two electrons. In addition, electrons in a two-electron droplet can form a state
with the total spin either 0 or 1. In the latter case, electrons occupy different energy levels in
the potential well. It can be easily shown that the distance between these levels is also about
the Coulomb interaction energy (or even exceeds it). Therefore, we consider doubly occupied
ferrons only in the state with antiparallel spins of excess electrons.

Let us introduce the notation q for the state of the ferron: q = 0 denotes an empty ferron,
q = 1 ↑ or 1 ↓ stand for a one-electron droplet with an electron spin projection σ/2 onto the
direction of the magnetic moment σ = +1(↑) and −1 (↓), and q = 2 corresponds to a two-
electron ferron. Accounting for the uniaxial magnetic anisotropy, we can write the following
expressions for a part of the ferron energy Eq dependent on the droplet radius and effective
magnetic fields [3, 9]:

E0 = 4π

3
J zS2 R3

d3
− M0(H cos θ + Ha cos2 ψ), (1)

E1,λ = E0 + t
π2d2

R2
− σ J̄ , (2)

E2 = E0 + 2t
π2d2

R2
+

e2

εR
, (3)

where Ha is the anisotropy field, M0 = µB gS4π R3/3d3 is the magnetic moment of a ferron,
θ and ψ are the angles between M0 and H and between M0 and the easy axis, respectively,σ/2
is the projection of the electron spin onto the direction of M0, µB is the Bohr magneton and g
is the Landé factor. In the following, we consider a single crystal in the applied magnetic field
directed at an angle β with respect to the easy axis. Then we have the following relationship:

cos ψ = cos θ cos β + sin θ sin β cos φ, (4)

where φ is the azimuthal angle characterizing the direction of the magnetic moment M0. We
assume, without loss of generality, that the corresponding azimuthal angle of the easy axis is
equal to zero.

In equations (1)–(3), the term t (πd/R)2 is the energy of an electron in a spherical potential
well of radius R and z J S24π R3/3d3 is the energy of the Heisenberg antiferromagnetic
exchange between the localized spins S, where t is the hopping integral, J is the constant
of the Heisenberg (antiferromagnetic) exchange, z is the number of nearest neighbours and
d is the lattice constant. The last term in equation (2) is the energy of the interaction
between the confined electron and the effective magnetic field Hef f = J̄/µB generated
by ferromagnetically ordered localized spins, where J̄ is the normalized exchange integral
related to the double exchange mechanism. Strictly speaking, in equation (2) we should
write µB |He f f + B| instead of J̄ , where B is the magnetic induction inside the droplet with
due account taken of its demagnetization factor. However, we neglected the induction B in
comparison with the effective field because Hef f is of the order of 100 T [10].

We assume here that the direction of the magnetic moments varies slowly enough and
the usual thermodynamic approach is applicable. The radius of a one-electron droplet can be
determined by the minimization of energy (2) and we find in the linear approximation with
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respect to the magnetic field

R(H ) ∼= R0

(
1 +

b

5
(H cos θ + Ha cos2 ψ)

)
,

R0 = d

(
π t

2z J S2

)1/5

, b = µB g

z J S
∼ 100 T−1.

(5)

As was shown in [6], the characteristic tunnelling time for electrons is much smaller than the
relaxation time for the local spin system. Hence, we can assume that an empty or two-electron
ferron has the same radius (5) as an equilibrium ferron with one charge carrier. We also assume
that the total number of ferrons (empty, one-electron and two-electron) remains constant and
is equal to N .

In our model, the charge transfer can occur via one of the following four processes [6]:

(i) In the initial state we have two ferrons in the ground state, and after tunnelling in the final
state we have an empty ferron and a ferron with two electrons.

(ii) An empty ferron and a two-electron ferron transform into two one-electron ferrons.
(iii) A two-electron and a one-electron ferron exchange their positions by transferring an

electron from one ferron to another.
(iv) An empty ferron and a one-electron ferron exchange their positions by transferring an

electron from one ferron to another.

Each process is characterized by its tunnelling probability per unit time, which is [9, 11]

W (q ′
1, q ′

2; q1, q2) = ω0 f (ν) exp

(
−r

l
+

e(Er)

kT
− Eq ′

1
+ Eq ′

2
− Eq1 − Eq2

2kT

)
, (6)

f (ν) = cosh( J̄ cos ν
kT )

cosh( J̄
kT )

, (7)

where l and ω0 are the tunnelling length and the characteristic frequency for the electron motion
in the potential well, r and ν are the distance between ferrons and the angle between directions
of their magnetic moments; q1, q2 and q ′

1, q ′
2 denote initial and final states of ferrons involved

in the tunnelling process. The angle ν can be expressed through polar θ1,2 and azimuthal φ1,2

angles characterizing the directions of the magnetic moments of ferrons in the states q1 and
q2:

cos ν(θ1, φ1, θ2, φ2) = cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ1 − φ2). (8)

The pre-exponential factor f (ν) in equation (6) is related to the spin-dependent tunnelling and
accounts for the different orientations of the magnetic moments of ferrons.

Summing the currents arising from each of the four processes, we find for the
conductivity [9]

σ(H ) = 32πe2l5ω0

V 2
s cosh( J̄/kT )kT

∑
q1,q2

N̄q1 N̄q2

×
〈
cosh

(
J̄ cos ν

kT

)
exp

(
Eq1 + Eq2 − Eq ′

1
− Eq ′

2

2kT

)〉
q1,q2

, (9)

where N̄q are the average occupation numbers of ferrons in state q and 〈· · ·〉q1,q2 stands for
the averaging over the direction of the magnetic moments of ferrons in states q1 and q2 with
probability density

Pq(θ, φ) = Cq exp

(
− Eq(θ, φ)

kT

)
,

∫
d� Pq(θ, φ) = 1. (10)
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In equation (9), it is assumed that during the tunnelling process the directions of the magnetic
moments of ferrons remain unchanged. The magnetic field dependence of conductivity (9) is
related to the variation both in the tunnelling probability and occupation numbers N̄q .

Based on equation (9), we can analyse the behaviour of the magnetoresistance MR(H ) =
σ(H )/σ0 − 1. The function MR(H ) in the whole magnetic field and temperature ranges could
only be found numerically. However, there are several important limiting cases for which it is
possible to find an explicit expression for the magnetoresistance. Later, we suppose that the
temperature is not too low and obeys the inequalities J̄ , M0 Ha < kT .

There are several contributions of different origin to the magnetoresistance [9]. In the
low-field limit, we can write explicit expressions for all these terms. The first one originates
from the magnetic field induced variation in droplet size R(H ) given by equation (5). This
variation leads to the variation of energies (1)–(3). The corresponding contribution to the
magnetoresistance is

MR1(H ) ≈ 3

100

M2
0 H 2

(kT )2
. (11)

The second contribution stems from the spin-dependent tunnelling, and for a single crystal
with an angle β between the easy axis and the magnetic field it yields

MR2(H ) ≈ 2

225

M3
0 J̄ 2 Ha H 2

(kT )5
(cos2 β − 1/3). (12)

We assumed above that the ferrons are spherical and the field Ha is determined only
by the crystallographic anisotropy. However, it can be shown that the effect of the ferron
shape becomes significant due to the demagnetization factor, even at small deviations from
sphericity. The shape anisotropy affects the anisotropy field Ha. Let us assume for simplicity
that the magnetic anisotropy is uniaxial and Ha is an effective anisotropy field including both
the crystallographic and shape anisotropy. Note that MR ∝ H 2/T 5 was observed over a rather
wide range of fields and temperatures for the (La1−x Prx)0.7Ca0.3MnO3 system [12].

The third contribution to the magnetoresistance relates to the variation of the metallic
phase content. When the system is far from the percolation threshold, the following evident
formula is valid for the conductivity of the metal–insulator mixture, σ = σd(1 + x), where σd

is the conductivity of the insulating matrix and x is the volume fraction of the metallic phase.
In our model, the concentration x is related to the droplet parameters by the formula

x = 4π

3Vs

∑
q

N̄q 〈R3〉q . (13)

The corresponding contribution to the magnetoresistance is due to the variation of x with the
magnetic field and can be presented in the form

MR3(H ) ∝ H 2

kT
.

Our estimations [9] show, however, that MR3(H ) is much smaller than MR1(H )+MR2(H )

in most cases. Therefore, we can deduce that, in low fields, the magnetoresistance decreases
with the temperature as T −2 if (11) is dominant or as T −5 if (12) is dominant. In general, it
behaves as

MR(H ) = AH 2

(kT )2
+

B H 2

(kT )5
,

where A and B are some constants.
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At high fields (10–20 T and higher), the magnetoresistance grows exponentially [6]:

MR(H ) ≈ J̄

kT
coth( J̄/kT ) exp

(
V bH

10kT

)
− 1, (14)

and its value can be as high as several hundred percent, even far from the percolation threshold.

3. Fluctuations of the occupation numbers

Based on the results of the preceding section, we shall study the voltage fluctuations related
to the fluctuations of the conductivity. In this section, we analyse the contribution to the noise
power caused by fluctuations of the number of electrons in ferrons, taking into account the
effect of applied magnetic field and the spin-dependent tunnelling of charge carriers. The
analysis is a generalization of the approach of [6].

Starting from the obvious equality between the voltage and conductivity fluctuations
δU/U = −δσ/σ and using equation (9) we can relate the voltage noise power to fluctuations
of the numbers Nq of different types of ferrons. Note that the fluctuations of Nq are not
independent. They obey the simple conservation law δN2 = δN0 = − ∑

σ δN1,σ /2. Taking
into account that the average numbers N̄0 = N̄2 are small in comparison with N̄1,σ we can
write

〈δU 2〉ω
Ū 2

= 〈δσ 2〉ω
σ̄ 2

= 〈δN2
2 〉ω

N̄2
2

, (15)

where Ū and σ̄ are the average voltage and conductivity, and the symbol 〈. . .〉ω stands for the
spectral density of the corresponding variables.

In the tunnelling processes, two-electron and empty ferrons are created and annihilated in
pairs. The corresponding relaxation time τ associated with this process is

1

τ
=

∑
σ1,σ2

W (1σ1, 1σ2; 0, 2). (16)

We should neglect the electric field term in expression (6) for probability W .
Based on the relaxation equation δ Ṅ2 = −δN2/τ , and following the same procedure as

in [6], we find

〈δN2
2 〉ω = 4π

N̄0 N̄2

Vs

〈∫ ∞

0

τ (r)r2 dr

1 + ω2τ 2(r)

〉
0,2

, (17)

where subscripts 0 and 2 denote that the averaging is performed over directions of the magnetic
moments of the two-electron and empty ferrons. Substituting equation (16) into (17) and
performing the integration we find that the noise spectrum has a 1/ f form in the frequency
range determined by the conditions

ω̃0 exp(−Lm/ l) 
 ω 
 ω̃0, ω̃0 = 4ω0eV/2kT cosh2( J̄/2kT )

cosh( J̄/kT )
, (18)

where Lm is the minimum sample size. Under conditions (18), we obtain the following
expression for the noise spectral density of the voltage noise:

〈δU 2〉ω = 2π2l3Ū 2

ωVs

〈
ln2

{
ω̃0

ω
cosh

[
J̄ cos ν

kT

]
exp

[
( 3

5 + 3κ
10 )Em(θ2, φ2) − 3

5 Em(θ0, φ0)

2kT

]}〉
0,2

,

(19)
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Figure 1. The magnetic field dependence of normalized spectral noise power 〈δU2 〉ω/Ū2 generated
by fluctuations of the occupation numbers Nq calculated at frequencies ω/ω̃0 = 10−15 (full curve)
and ω/ω̃0 = 10−10 (broken curve). These frequencies are of the order of 102 and 107 s−1,
respectively. The parameter values used are M0 Ha/kT = 3, J̄/kT = 2, β = π/3, κ = 0.2.

where Em(θ, φ) = −M0(H cos θ + Ha cos2 ψ(θ, φ)) and κ = V R2
0/(π

2td2) � 1 is the ratio
of the Coulomb energy to the energy of an electron localized in a spherical potential well. We
use here the relationships (1)–(3) for the ferron energies and equation (5) for the ferron radius
R(H ).

The averaging over the directions of the magnetic moments of ferrons in equation (19)
can only be performed numerically. The magnetic field dependence of the noise power (19) is
shown in figure 1. We see that the normalized noise spectrum varies slowly with the field. The
noise power decreases at low magnetic field owing to the alignment of the magnetic moments
of ferrons related to the term with hyperbolic cosine in equation (19). The further increase in
the noise power stems from the lowering of the Coulomb energy with the growth of the ferron
radii in higher magnetic fields. Note that the form of normalized noise spectrum depends only
slightly on the angle β.

4. Fluctuations of magnetic moments

In this section, we consider another mechanism of the conductivity noise related to fluctuations
of the magnetic moments of ferrons. We suppose here that a ferron is an ellipsoid of rotation.
Note that ferrons in layered manganites can have this shape [3, 13]. In this case, the magnetic
moment of the ferron is M0 = 4πµB gSab2/3d3, where a > b = c are the ellipsoid axes. We
consider a single crystal and assume that the directions of the easy axes of ferrons are parallel
each other. Moreover, the ratio a/b is assumed to be constant. We shall use here equation (9)
for the conductivity, neglecting the effect of the droplet shape on σ(H ).
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We assume that the main contribution to the anisotropy field Ha comes from the shape
anisotropy of ferrons. Then, the field Ha can be written in the form

Ha = 2π
µB gS

d3
(Nb − Na) = 2π Is(Nb − Na), (20)

where Nb and Na are the demagnetization factors along axes b and a, and Is is the saturation
magnetization. Let us denote ξ = 2(Nb −Na). This variable has the maximum value ξmax ≈ 1
at a � b, which corresponds to the anisotropy field H max

a ≈ πgSµB/d3. At characteristic
values of the parameters g = 2, S = 2 and d = 0.4 nm, Ha ≈ 1.8 kOe.

In this section, we consider the case of low temperatures when exp (−π M0 Isξ/kT ) 
 1
and we can assume that the magnetic moment of a ferron only has one or two possible directions
(depending on the applied field), which are determined by the minimization of the energy of
a ferromagnetic ellipsoid in magnetic field H :

Em = −M0(π Isξ cos2 ψ + H cos θ), (21)

where

cos ψ = cos θ cos β + sin θ sin β cos φ

and β (0 < β < π/2) is the angle between the direction of the long axis of the ferron and the
applied magnetic field. The energy Em has two minima if H < H0(ξ, β) ≈ π Isξ and a single
minimum at higher fields.

The magnetic moment of the ferron lies evidently in the plane of the field H and the easy
axis. At low fields, the deeper minimum corresponds to an azimuthal angle φ+ = 0, whereas
the second minimum corresponds to φ− = π . The energies of these minima are

E+
m(H, ξ, β) = −M0(π Isξ cos2(θ+ − β) + H cos θ+), (22)

E−
m (H, ξ, β) = −M0(π Isξ cos2(θ− + β) + H cos θ−), (23)

where angles θ± should be determined by the minimization of these expressions. At H > H0,
the single minimum of the energy Em is given by equation (22). We consider the case of
sufficiently low fields when ferrons have two minima of energy Em .

At low fields, we can assume that the ferron’s size does not depend on H . In this case,
the probability densities (10) do not depend on the ferron state q and can be written as

P(θ, φ) = C exp

(
− Em(θ, φ)

kT

)
. (24)

It follows from definitions (1)–(3) that the argument of the exponential in equation (9) is
independent of the angular variables and can be taken out of the angular brackets. Then〈

cosh

(
J̄ cos ν

kT

)〉
=

∫
d�1 d�2 P(θ1, φ1)P(θ2, φ2) cosh

(
J̄ cos ν

kT

)
. (25)

In our approach, we should replace the integration over the solid angle in equation (25) by the
summation over two states of the ferron with its magnetic moment directed parallel (+) and
antiparallel (−) to the applied magnetic field. In the thermal equilibrium, the corresponding
probabilities can be written as

PS = e−E S
m/kT∑

S′ e−E S′
m /kT

, S, S′ = ±. (26)

The number of ferrons in state S equals N̄S = N PS . When the ferron has only one minimum
of the energy Em we have P+ = 1, P− = 0.

The noise discussed in this section is related to the fluctuations δNS of numbers NS . It
is convenient to introduce the notation δPS = δNS/N since N is constant. The fluctuations



Tunnelling magnetoresistance and 1/ f noise in phase-separated manganites 1713

of the magnetic moment and the number of electrons in the ferrons are not correlated since
they are characterized by different timescales. The relaxation time of the electron numbers is
τe = exp(−V/2kT )/8πl3nω0 ∼ 10−17 s [6], whereas the estimation of the relaxation time for
the magnetic moment gives values much higher than τe (see the discussion below). Therefore,
we can assume that the Nq are equal to their equilibrium values.

Substituting probabilities equation (26) into (25) and taking into account that δP+ +δP− =
0, we obtain for the conductivity fluctuations

δσ

σ̄
≡ 2δP− A(H, ξ, β), (27)

where

A(H, ξ, β) ∼= 1

cosh
(

J̄
kT

) ∑
S1

PS1

[
cosh

(
J̄

kT
cos ν(θ−, φ−, θ

S1
1 , φ

S1
1 )

)

− cosh

(
J̄

kT
cos ν(θ+, φ+, θ

S1
1 , φ

S1
1 )

)]
. (28)

In equations (27) and (28) we take σ̄ (H ) = σ̄ (0) since we discuss here the low-field limit.
Note that at the sufficiently high fields H > H0(ξ, β), we have only one free energy minimum
and the conductivity fluctuations of this type vanish.

The relaxation of the magnetic moment of the droplet from one S state to another is
determined by overcoming the minimum energy barrier:

�±(H, ξ, β) = E0
m(H, ξ, β) − E±

m (H, ξ, β), (29)

where E0
m is the energy corresponding to the lowest saddle point of the function Em(θ, φ).

The relaxation time is then
1

τ (H, ξ, β)
= �0(ξ)

[
exp

(
−�+(H, ξ, β)

kT

)
+ exp

(
−�−(H, ξ, β)

kT

)]
, (30)

where [15, 16]

�0(ξ) = µBπgSIsξ

h̄

√
M0 Isξ

kT
. (31)

Substituting the characteristic values of the parameters involved in the last two equations, we
find that τ (H, ξ, β) > 10−10–10−11 s, which is much higher than the relaxation time τe for the
electron numbers.

Assuming that there is no correlation between the fluctuations of magnetic moments of
different ferrons, we obtain the following expression for the noise power from equation (28):

〈δU 2〉ω
Ū 2

= A2(H, ξ, β)

N cosh2( E+
m(H,ξ,β)−E−

m (H,ξ,β)

2kT

) 2τ (H, ξ, β)

1 + ω2τ 2(H, ξ, β)
. (32)

In the H 
 π Isξ limit, we can expand equation (32) in series and find the explicit formula
for the noise power:

〈δU 2〉ω
Ū 2

= H 4 sin4 β

(π Isξ)4

tanh2( J̄/kT ) tanh2(M0 H cos β/kT )

N cosh2(M0 H cos β/kT )

2τ (H, ξ, β)

1 + ω2τ 2(H, ξ, β)
, (33)

and

τ (H, ξ, β) = (2�0(ξ))−1 exp[−M0(π Isξ + H sin β)/kT ]

cosh(M0 H cos β/kT )
. (34)

We see that, in contrast to equation (19), the noise spectrum does not have the 1/ f form and
depends strongly on the magnetic field and temperature. It follows from equation (33) that
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Figure 2. The spectrum of the noise generated by fluctuations of the magnetic moments of
ferrons calculated at H/(π Is) = 0.05 (full curve) and H/(π Is) = 0.5 (broken line). The
parameter values used are M0π Is/kT = 15, J̄/kT = 5, ξ1 = 0.2, ξ2 = 0.9. At low
frequencies ω/�0(1) � 10−6–10−5, the noise power is constant, and at high frequencies
ω/�0(1) � 10−2–10−1 it behaves as 1/ω2. In the intermediate range, the frequency dependence
of the noise is described approximately by the 1/ω law. This region shifts to high frequencies when
the field is increased.

δ〈U 2〉ω ∝ H 6/T 2 if M0 H cos β 
 kT . In relatively high fields, when M0 H cos β > kT (but
still H < π Isξ ), the noise power decreases exponentially. The steep growth of the noise at
low fields is caused by the splitting between two energy minima E±

m for ferrons. The further
decrease of the noise at higher fields is related to the suppression of the transitions to the
state with the ferron magnetic moment antiparallel to the applied field. It also follows from
equation (32) that the noise power vanishes when the applied field is parallel or perpendicular
to the easy axis.

Formula (32) is valid for a single crystal. For polycrystals, we should make an averaging
procedure in equation (32). We assume here that the parameter ξ is distributed in the range
ξ1 < ξ < ξ2 and the directions of the easy axes of crystallites are randomly distributed. In
this case, the formula for the noise power of the polycrystal can be obtained by averaging
equation (32) over ξ and β with probability density w(ξ) sin β. This procedure is adequate if
the resistance of crystallites does not differ significantly from each other and the frequency ω

is much less than the inverse value of the tunnelling time. The scatter of the parameters ξ and
β leads to the 1/ f form of the noise spectrum in the frequency range

1

τ (H, ξ2, βmax )
< ω <

1

τ (H, ξ1, βmin)
, (35)

where βmax , and βmin are the angles corresponding to the maximum and minimum of the time
τ with given ξ . The results of the numerical calculations for the case w(ξ) = constant are
shown in figure 2.
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Note that, in addition to the noise mechanism related to the transition of the magnetic
moment between two energy minima, there also exists a noise caused by the small oscillations
of the ferron magnetic moment near a single equilibrium direction. However, the calculations
show that the noise power related to the latter mechanism is small compared to the former one.

5. Fluctuation of ferron size

In this section we calculate the noise power generated by the fluctuations of the ferron size. In
this mechanism, the main contribution to the voltage noise evidently comes from the variation
of the Coulomb barrier V = e2/εR. Therefore, we can neglect the effects of the magnetic
field and electron spin on the ferron energy. For simplicity, we consider here spherical ferrons.
In this case, the conductivity depends on a ferron radius as σ ∝ exp(−e2/(2εRkT )) [6] and
we easily obtain

〈δσ 2〉ω
σ̄ 2

=
(

V

2kT

)2
�R2

N R2
0

2τR

1 + ω2τ 2
R

, (36)

where τR is of the order of the characteristic relaxation time of magnons and τR ∼
10−12–10−13 s. The standard deviation �R2 can be found in the following way. The energy of
the ferron in the ground state E1(R) = tπ2d2/R2+4π J zS2 R3/(3d3) is found from equation (2)
where we should neglect the terms depending on the magnetic fields and electron spin. The
mean value of Rn can be written in the form

Rn =
∫ ∞

0 exp{−E1(R)/kT }Rn+2 dR∫ ∞
0 exp{−E1(R)/kT }R2 dR

. (37)

The calculation of integral (37) with n = 1 and 2 using a saddle-point approximation gives
the following relationship for the quadratic deviation:

�R2 = R4
0kT

10π2td2
, (38)

and finally we obtain

〈δU 2〉ω = Ū 2 V

kT

κ

20N

τR

1 + ω2τ 2
R

. (39)

In the case of one-electron ferrons, there is no reasonable mechanism of a large scatter in τR

as well as in the ferron sizes. Therefore, the fluctuations of ferron sizes cannot be a source
of the 1/ f noise in the framework of our model. However, in real systems, the sizes of
the ferromagnetic regions can undergo wide range variations, which could give an additional
contribution to the 1/ f noise.

6. Conclusions

The magnetoresistance and noise power for the non-metallic phase-separated manganites were
studied in the framework of the model of small ferromagnetic metallic droplets embedded in the
insulating matrix. The concentration of droplets was supposed to be far from the percolation
limit. The charge transfer in the system was assumed to be due to the tunnelling of electrons
from one droplet to another.

A general expression for the conductivity in an external magnetic field was derived.
The low-field magnetoresistance MR(H ) is a quadratic function of H whereas the
magnetoresistance exhibits an exponential growth with H in the high-field limit.
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At low fields, the temperature dependence of the magnetoresistance has the form

MR(H ) = AH 2

T 2
+

B H 2

T 5
,

where the first term is due to the variation of droplet size caused by the magnetic field and the
second term originates from the spin-assisted electron tunnelling. In the case of the systems
with relatively large ferromagnetic droplets and magnetic anisotropy, the second term becomes
dominant and the magnetoresistance decreases with temperature as T −5. Such behaviour
was indeed observed for the (La1−x Prx)0.7Ca0.3MnO3 system [12]. The results obtained can
explain the observed large (up to 100% and higher) magnetoresistance of manganites in the
paramagnetic phase.

The available experiments for phase-separated manganites demonstrated strong 1/ f
noise in a wide frequency range [7, 8]. There are two main sources of 1/ f noise in our
model: the fluctuations of the number of electrons in the droplet and the fluctuations of the
magnetic moments. To characterize the 1/ f noise, it is convenient to introduce the variable
α = Vsω〈δU 2〉ω/Ū 2 [14].

First, let us estimate the parameter αN , i.e. the contribution to the noise due to fluctuations
of the electron occupation numbers. Since the Coulomb energy V ∼ 0.1 eV and the parameter
h̄ω0 (which is about the energy of electron localization) has the same order of magnitude,
we find that ω̃0 ∼ 1017 s−1. At the frequency range 1–106 Hz and H < 20–30 T, αN is
nearly independent of the magnetic field (in agreement with the experiment [8]) and is close to
αN ≈ 2π2l3 ln2(ω̃0/ω) obtained in [6]. It is natural to assume that the tunnelling length is about
a ferron radius R0 ∼ 1 nm. As a result we get the following estimate: αN ∼ 10−17–10−16 cm3.
This value of 1/ f noise power is higher by several orders of magnitude than those typical for
semiconductors [14].

The parameter αM related to the 1/ f noise generated by fluctuations of the magnetic
moments of ferrons strongly depends on the magnetic field and temperature. Using
equations (33) and (34), it can be shown that, at relatively low field (H 
 π Isξ), αM ∝
M3

0 H 6/T m , where m = 5 if kT > J̄ and m = 3 if kT < J̄ . In the framework of our model, it
turns out that αM 
 αN at any realistic parameter values. However, it is clear from the analysis
given in section 4 that the results for this type of noise are applicable not only to the case of
one-electron ferrons but are also valid for ferromagnetic droplets of larger dimensions. Since
the power of this noise is proportional to the cube of the droplet magnetic moment (that is, to
the cube of the droplet volume) the discussed mechanism can give an appreciable contribution
to the total 1/ f noise power in real materials (especially at low temperatures and high fields)
where ferromagnetic regions of different sizes can exist.
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